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Model-Based Inversion of Dynamic
Range Compression

Stanislaw Gorlow, Student Member, IEEE, and Joshua D. Reiss, Member, IEEE

Abstract—In this work it is shown how a dynamic nonlinear
time-variant operator, such as a dynamic range compressor, can
be inverted using an explicit signal model. By knowing the model
parameters that were used for compression one is able to recover
the original uncompressed signal from a “broadcast” signal with
high numerical accuracy and very low computational complexity.
A compressor-decompressor scheme is worked out and described
in detail. The approach is evaluated on real-world audio material
with great success.

Index Terms—Dynamic range compression, inversion,
model-based, reverse audio engineering.

I. INTRODUCTION

S OUND or audio engineering is an established discipline
employed in many areas that are part of our everyday life

without us taking notice of it. But not many know how the audio
was produced. If we take sound recording and reproduction or
broadcasting as an example, we may imagine that a prerecorded
signal from an acoustic source is altered by an audio engineer
in such a way that it corresponds to certain criteria when played
back. The number of these criteria may be large and usually
depends on the context. In general, the said alteration of the
input signal is a sequence of numerous forward transformations,
the reversibility of which is of little or no interest. But what if
one wished to do exactly this, that is to reverse the transfor-
mation chain, and what is more, in a systematic and repeatable
manner?
The research objective of reverse audio engineering is

twofold: to identify the transformation parameters given the
input and the output signals, as in [1], and to regain the input
signal that goes with the output signal given the transformation
parameters. In both cases, an explicit signal model is manda-
tory. The latter case might seem trivial, but only if the applied
transformation is linear and orthogonal and as such perfectly
invertible. Yet the forward transform is often neither linear
nor invertible. This is the case for dynamic range compression
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(DRC), which is commonly described by a dynamic nonlinear
time-variant system. The classical linear time-invariant (LTI)
system theory does not apply here, so a tailored solution to the
problem at hand must be found instead. At this point, we also
like to highlight the fact that neither Volterra nor Wiener model
approaches [2]–[4] offer a solution, and neither do describing
functions [5], [6]. These are useful tools when identifying a
time-invariant or a slowly varying nonlinear system or ana-
lyzing the limit cycle behavior of a feedback system with a
static nonlinearity.
A method to invert dynamics compression is described in [7],

but it requires an instantaneous gain value to be transmitted for
each sample of the compressed signal. To provide a means to
control the data rate, the gain signal is subsampled and also en-
tropy coded. This approach is highly inefficient as it does not
rely on a gain model and is extremely generic.
On the other hand, transmitting the uncompressed signal in

conjunction with a few typical compression parameters like
threshold, ratio, attack, and release would require a much
smaller capacity and yield the best possible signal quality with
regard to any thinkable measure. A more realistic scenario is
when the uncompressed signal is not available on the consumer
side. This is usually the case for studio music recordings and
broadcast material where the listener is offered a signal that is
meant to sound “good” to everyone. However, the loudness war
[8] has resulted in over-compressed audio material. Over-com-
pression makes a song lose its artistic features like excitingness
or liveliness and desensitizes the ear thanks to a louder volume.
There is a need to restore the original signal’s dynamic range
and to experience audio free of compression.
In addition to the normalization of the program’s loudness

level, the Dolby solution [9], [10] also includes dynamic range
expansion. The expansion parameters that help reproduce the
original program’s dynamic range are tuned on the broadcaster
side and transmitted as metadata together with the broadcast
signal. This is a very convenient solution for broadcasters, not
least because the metadata is quite compact. Dynamic range ex-
pansion is yet another forward transformation rather than a true
inversion.
Evidently, none of the previous approaches satisfy the re-

verse engineering objective of this work. The goal of the present
work, hence, is to invert dynamic range compression, which is
a vital element not only in broadcasting but also in mastering.
The paper is organized as follows. Section II provides a brief
introduction to dynamic range compression and presents the
compressor model upon which our considerations are based.
The data model, the formulation of the problem, and the pur-
sued approach are described next in Section III. The inversion
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Fig. 1. Basic broadband compressor model (feed forward).

is discussed in detail in Section IV. Section V illustrates how
an integral step of the inversion procedure, namely the search
for the zero-crossing of a non-linear function, can be solved in
an iterative manner by means of linearization. Some other com-
pressor features are discussed in Section VI. The complete al-
gorithm is given in the form of pseudocode in Section VII and
its performance is evaluated for different compressor settings in
Section VIII. Conclusions are drawn in Section IX, where some
directions for future work are mentioned.

II. DYNAMIC RANGE COMPRESSION

Dynamic range compression or simply “compression” is a
sound processing technique that attenuates loud sounds and/or
amplifies quiet sounds, which in consequence leads to a reduc-
tion of an audio signal’s dynamic range. The latter is defined
as the difference between the loudest and quietest sound mea-
sured in decibel. In the following, we will use the word “com-
pression” having “downward” compression in mind, though the
discussed approach is likewise applicable to “upward” compres-
sion. Downward compressing means attenuating sounds above
a certain threshold while leaving sounds below the threshold
unchanged. A sound engineer might use a compressor to reduce
the dynamic range of source material for purposes of aesthetics,
intelligibility, recording or broadcast limitations.
Fig. 1 illustrates the basic compressor model from ([11], ch.

2) amended by a switchable RMS/peak detector in the side chain
making it compatible with the compressor/limiter model from
([12], p. 106). We will hereafter restrict our considerations to
this basic model, as the purpose of the present work is to demon-
strate a general approach rather than a solution to a specific
problem. First, the input signal is split and a copy is sent to
the side chain. The detector then calculates the magnitude or
level of the sidechain signal using the root mean square (RMS)

or peak as a measure for how loud a sound is ([12], p. 107).
The detector’s temporal behavior is controlled by the attack
and release parameters. The sound level is compared with the
threshold level and, for the case it exceeds the threshold, a scale
factor is calculated which corresponds to the ratio of input level
to output level. The knee parameter determines how quick the
compression ratio is reached. At the end of the side chain, the
scale factor is fed to a smoothing filter that yields the gain. The
response of the filter is controlled by another set of attack and re-
lease parameters. Finally, the gain control applies the smoothed
gain to the input signal and adds a fixed amount of makeup
gain to bring the output signal to a desired level. Such a broad-
band compressor operates on the input signal’s full bandwidth,
treating all frequencies from zero through the highest frequency
equally. A detailed overview of all sidechain controls of a basic
gain computer is given in ([11], ch. 3), e.g.,

III. DATA MODEL, PROBLEM FORMULATION, AND
PROPOSED SOLUTION

A. Data Model and Problem Formulation

The employed data model is based on the compressor from
Fig. 1. The following simplifications are additionally made: the
knee parameter (“hard” knee) and the makeup gain (fixed at
0 dB) are ignored. The compressor is defined as a single-input
single-output (SISO) system, that is both the input and the
output are single-channel signals. What follows is a description
of each block by means of a dedicated function.
The RMS/peak detector as well as the gain computer build

upon a first-order (one-pole) lowpass filter. The sound level or
envelope of the input signal is obtained by

(1)
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where represents an RMS detector, and a peak
detector. The non-zero smoothing factor

, may take on different values, or , depending
on whether the detector is in the attack or release phase. The
condition for the level detector to enter the attack phase and to
choose over is

(2)

A formula that converts a time constant into a smoothing
factor is given in ([12], p. 109), so e.g.,

where is the sampling frequency. The static nonlinearity in
the gain computer is usually modeled in the logarithmic domain
as a continuous piecewise linear function:

(3)

where is the slope, , and is the
threshold in decibel. The slope is further derived from the de-
sired compression ratio according to

(4)

Equation (3) is equivalently expressed in the linear domain as

(5)

where , and is the linear scale factor
before filtering. The smoothed gain is then calculated as the
exponentially-weighted moving average,

(6)

where the decision for the gain computer to choose the attack
smoothing factor instead of is subject to

(7)

The output signal is finally obtained by multiplying the above
gain with the input signal:

(8)

Due to the fact that the gain is strictly positive, , it
follows that

(9)

where sgn is the signum or sign function. In consequence, it is
convenient to factorize the input signal as a product of the sign
and the modulus according to

(10)

The problem at hand is formulated in the following manner:
Given the compressed signal and the model parameters

recover the modulus of the original signal from
based on . For a more intuitive use, the smoothing factors
and may be replaced by the time constants and . The
meaning of each parameter is listed below.

The threshold in dB

The compression ratio dB : dB

The detector type (RMS or peak)

The attack time of the envelope filter in ms

The release time of the envelope filter in ms

The attack time of the gain filter in ms

The release time of the gain filter in ms

B. Proposed Solution

The output of the side chain, that is the gain of , given
, and , may be written as

(11)

In (11), denotes a nonlinear dynamic operator that maps the
modulus of the input signal onto a sequence of instanta-
neous gain values according to the compressor model rep-
resented by . Using (11), (8) can be solved for yielding

subject to invertibility of . In order to solve the above equa-
tion one requires the knowledge of , which is unavailable.
However, since is a function of , we can express as a
function of one independent variable , and in that manner we
obtain an equation with a single unknown:

(12)

where represents the entire compressor. If is invertible,
i.e., bijective for all can be obtained from by

(13)

And yet, since is unknown, the condition for applying
decompression must be predicted from , and

, and therefore needs the condition for toggling between
the attack and release phases. Depending on the quality of the
prediction, the recovered modulus may differ somewhat
at transition points from the original modulus , so that in
the end

(14)



GORLOW AND REISS: MODEL-BASED INVERSION OF DYNAMIC RANGE COMPRESSION 1437

In the next section it is shown how such an inverse compressor
or decompressor is derived.

IV. INVERSION OF DYNAMIC RANGE COMPRESSION

A. Characteristic Function

For simplicity, we choose the instantaneous envelope value
instead of as the independent variable in (12). The

relation between the two items is given by (1). From (6) and (8),
when

(15)

(16)

From (1),

(17)

or equivalently (note that by definition)

(18)

Moreover, (18) has a unique solution if and also are in-
vertible. Moving the expression on the left-hand side over to
the right-hand side, we may define

(19)

which shall be termed the characteristic function. The root or
zero-crossing of hence represents the sought-after enve-
lope value . Once is found (see Section V), the current
values of , and are updated as per

(20)

and the decompressed sample is then calculated as

(21)

B. Attack-Release Phase Toggle

1) Envelope Smoothing: In case a peak detector is in use,
takes on two different values. The condition for the attack phase
is then given by (2) and is equivalent to

(22)

Assuming that the past value of is known at time , what is
needed to be done is to express the unknown in terms of
such that the above equation still holds true. If is rather

small, , or equivalently if is sufficiently large,

ms at 44.1-kHz sampling, the term in (15) is
negligible, so it approximates (15) as

(23)

Solving (23) for and plugging the result into (22), we
obtain

(24)

If (24) holds true, the detector is assumed to be in the attack
phase.
2) Gain Smoothing: Just like the peak detector, the gain

smoothing filter may be in either the attack or release phase.
The necessary condition for the attack phase in (7) may also be
formulated as

(25)

But since the current envelope value is unknown, we need to
substitute in the above inequality by something that is
known. With this in mind, (15) is rewritten as

(26)

Provided that , and due to the fact that
, the expression in square brackets in (26) is smaller than

one, and thus during attack

(27)

Substituting by using (20),
and solving (27) for results in

(28)

If in (25) is substituted by the expression on the right-
hand side of (28), (25) still holds true, so the following sufficient
condition is used to predict the attack phase of the gain filter:

(29)

Note that the values of all variables are known whenever (29) is
evaluated.

C. Envelope Predictor

An instantaneous estimate of the envelope value is re-
quired not only to predict when compression is active, formally

according to (5), but also to initialize the iterative
search algorithm in Section V. Resorting once more to (15) it



1438 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 7, JULY 2013

can be noted that in the opposite case where ,
and so

(30)

The sound level of the input signal at time is therefore

(31)

which must be greater than the threshold for compression to
set in, whereas and are selected based on (24) and (29),
respectively.

D. Error Analysis

Consider being estimated from according to

(32)

The normalized error is then

(33)

(34)

As during attack and
during release, respectively. The instantaneous gain can
also be expressed as

(35)

where is the runtime in samples. Using (35) in (34), the mag-
nitude of the error is given by

(36)

(37)

For , (36) becomes

(38)

whereas for , (37) converges to infinity:

(39)

So, the error is smaller for large or short . The smallest
possible error is for , which then again depends on the
current and the previous value of . The error accumulates if

Fig. 2. Graphical illustration for the iterative search for the zero-crossing.

with . The difference between consecutive -values is
signal dependent. The signal envelope fluctuates less and
is thus smoother for smaller or longer . is also more
stable when the compression ratio is low. For
is perfectly constant. The threshold has a negative impact on
error propagation. The lower the more the error depends on
, since more samples are compressed with different -values.

The RMS detector stabilizes the envelope more than the peak
detector, which also reduces the error. Furthermore, since usu-
ally , the error due to is smaller during release
whereas the error due to is smaller during attack. Finally, the
error is expected to be larger at transition points between quiet
to loud signal passages.
The above error may cause a decision in favor of a wrong

smoothing factor in (24), like instead of e.g., The
decision error from (24) then propagates to (29). Given that

, the error due to (32) is accentuated by (24) with
the consequence that (29) is less reliable than (24). The total
error in (29) thus scales with . In regard to (31), re-
liability of the envelope’s estimate is subject to validity of (24)
and (29). A better estimate is obtained when the sound level de-
tector and the gain filter are both in either the attack or release
phase. Here too, the estimation error increases with
and also with .

V. NUMERICAL SOLUTION OF THE CHARACTERISTIC FUNCTION

An approximate solution to the characteristic function can be
found, e.g., by means of linearization. The estimate from (31)
may moreover serve as a starting point for an iterative search of
an optimum:

The criterion for optimality is further chosen as the deviation of
the characteristic function from zero, initialized to

(40)

Thereupon, (19) may be approximated at a given point using the
equation of a straight line, , where is the slope
and is the -intercept. The zero-crossing is characterized by
the equation

(41)
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as shown in Fig. 2. The new estimate of the optimal is found
as

(42)

If is less optimal than , the iteration is stopped and is
the final estimate. The iteration is also stopped if is smaller
than some . In the latter case, has the optimal value with
respect to the chosen criterion. Otherwise, is set to and
is set to after every step and the procedure is repeated

until has converged to a more optimal value. The proposed
method is a special form of the secant method with a single
initial value .

VI. GENERAL REMARKS

A. Stereo Linking

When dealing with stereo signals, one might want to apply
the same amount of gain reduction to both channels to prevent
image shifting. This is achieved through stereo linking. One
way is to calculate the required amount of gain reduction for
each channel independently and then apply the larger amount
to both channels. The question which arises in this context is
which of the two channels was the gain derived from. To give
an answer resolving the dilemma of ambiguity, one solution
would be to signal which of the channels carries the applied
gain. One could then decompress the marked sample and use its
gain for the other channel. Although very simple to implement,
this approach provokes an additional data rate of 44.1 kbps at
44.1-kHz sampling. A rate-efficient alternative that comes with
a higher computational cost is realized in the following way.
First, one decompresses both the left and the right channel in-
dependently and in so doing one obtains two estimates
and , where subscript shall denote the left channel and
subscript the right channel, respectively. In a second step, one
calculates the compressed values of and and selects
the channel for which holds true. In a final
step, one updates the remaining variables using the gain of the
selected channel.

B. Lookahead

A compressor with a look-ahead function, i.e., with a delay in
the main signal path as in ([12], p. 106), uses past input samples
as weighted output samples. Now that some future input sam-
ples are required to invert the process—which are unavailable,
the inversion is rendered impossible. and must thus
be in sync for the approach to be applied.

C. Clipping and Limiting

Another point worth mentioning is that “hard” clipping and
“brick-wall” limiting are special cases of compression with the
attack time set to zero and the compression ratio set to .
The static nonlinearity in that particular case is a one-to-many
mapping, which by definition is noninvertible.

VII. THE ALGORITHM

The complete algorithm is divided into three parts, each
of them given as pseudocode below. Algorithm 1 out-
lines the compressor that corresponds to the model from
Sections II–III. Algorithm 2 illustrates the decompressor de-
scribed in Section IV, and the iterative search from Section V
is finally summarized in Algorithm 3. The parameter repre-
sents the sampling frequency in kHz.

Algorithm 1 The compressor

function COMP

for do

if then

else

end if

if then

else

end if
if then

else

end if

end for
return

end function

VIII. PERFORMANCE EVALUATION

A. Performance Metrics

To evaluate the inverse approach, the following quantities are
measured: the root-mean-square error (RMSE),

(43)

given in decibel relative to full scale (dBFS), the perceptual sim-
ilarity between the original and decompressed signal, and the
execution time of the decompressor relative to real time (RT).
Furthermore, we present the percentage of compressed samples,
themean number of iterations until convergence per compressed
sample, the error rate of the attack-release toggle for the gain
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smoothing filter, and finally the error rate of the envelope pre-
dictor. The perceptual similarity is assessed by PEMO-Q [13],

Algorithm 2 The decompressor

function DECOMP

for do

if then

else

end if

if then

else

end if

if then

CHARFZERO

else

end if

end for
return

end function

Algorithm 3 The iterative search for the zero-crossing

function CHARFZERO

repeat

if then

return

end if

until

return

end function

[14] with as metric. The simulations are run in MATLAB
on an Intel Core i5-520M CPU.

B. Computational Results

Fig. 3 shows the inverse output signal for a synthetic
input signal using an RMS detector. The inverse signal
is obtained from the compressed signal with an error of

dBFS. It is visually indistinguishable from the original
signal . Due to the fact that the signal envelope is con-
stant most of the time, the error is noticeable only around tran-
sition points—which are few. The decompressor’s performance
is further evaluated for some commercial compressor presets.
The used audio material consists of 12 items covering speech,
sung voice, music, and jingles. All items are normalized to
LKFS [15]. The -value in the break condition of Algorithm 3
is set to . A detailed overview of compressor settings
and performance figures is given in Tables I–II. The presented
results suggest that the decompressed signal is perceptually in-
distinguishable from the original—the -value is flawless.
This was also confirmed by the authors through informal lis-
tening tests.
As can be seen from Table II, the largest inversion error is

associated with setting E and the smallest with setting B. For
all five settings, the error is larger when an RMS detector is
in use. This is partly due to the fact that has a stronger
curvature in comparison to . By defining the distance in
(40) as , it is possible to attain a smaller error for
an RMS detector at the cost of a slightly longer runtime. In most
cases, the envelope predictor works more reliably as compared
to the toggle switch between attack and release. It can also be
observed that the choice of time constants seems to have little
impact on decompressor’s accuracy. The major parameters that
affect the decompressor’s performance are and , while the
threshold is evidently the predominant one: the RMSE strongly
correlates with the threshold level.
Figs. 4–5 show the inversion error as a function of various

time constants. These are in the range of typical attack and re-
lease times for a limiter (peak) or compressor (RMS) ([12], pp.
109–110). It can be observed that the inversion accuracy de-
pends on the release time of the peak detector and not so much
on its attack time for both the envelope and the gain filter, see
Figs. 4, 5(b). For the envelope filter, all error curves exhibit
a local dip around a release time of 0.5 s. The error increases
steeply below that bound but moderately with larger values. In
the proximity of 5 s, the error converges to dBFS. With
regard to the gain filter, the error behaves in a reverse manner.
The curves in Fig. 5(b) exhibit a local peak around 0.5 s with
a value of 180 dBFS. It can further be observed in Fig. 4(a)
that the curve for ms has a dip where is close
to 1 ms, i.e., where is minimal. This is also true for
Fig. 4(c) and (d): the lowest error is where the attack and release
times are identical. As a general rule, the error that is due to the
attack-release switch is smaller for the gain filter in Fig. 5.
Looking at Fig. 6 one can see that the error decreases with

threshold and increases with compression ratio. At a ratio of
10:1 and beyond, the RMSE scales almost exclusively with the
threshold. The lower the threshold, the stronger the error prop-
agates between decompressed samples, which leads to a larger
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Fig. 3. An illustrative example using an RMS amplitude detector with set to 5 ms, a threshold of dBFS (dashed line in the upper right corner), a com-
pression ratio of 4:1, and set to 1.6 ms for attack and 17 ms for release, respectively. The RMSE is dBFS.

TABLE I
SELECTED COMPRESSOR SETTINGS

TABLE II
PERFORMANCE FIGURES OBTAINED FOR VARIOUS AUDIO MATERIAL (12 ITEMS)

RMSE value. The RMS detector further augments the error be-
cause it stabilizes the envelope more than the peak de-
tector. Clearly, the threshold level has the highest impact on the
decompressor’s accuracy.

IX. CONCLUSION AND OUTLOOK

This work examines the problem of finding an inverse to a
nonlinear dynamic operator such as a digital compressor. The

proposed approach is characterized by the fact that it uses an
explicit signal model to solve the problem. To find the “dry” or
uncompressed signal with high accuracy, it is sufficient to know
the model parameters. The parameters can e.g., be sent together
with the “wet” or compressed signal in the form of metadata as
is the case with Dolby Volume and ReplayGain [16]. A new bit-
stream format is not mandatory, since many digital audio stan-
dards, like WAV or MP3, provide means to tag the audio con-



1442 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 7, JULY 2013

Fig. 4. RMSE as a function of typical attack and release times using a peak (upper row) or an RMS amplitude detector (lower row). In the left column, the attack
time of the envelope filter is varied while the release time is held constant. The right column shows the reverse case. The time constants of the gain filter are fixed
at zero. In all four cases, threshold and ratio are fixed at 32 dBFS and 4:1, respectively.

Fig. 5. RMSE as a function of typical attack and release times using a peak (upper row) or an RMS amplitude detector (lower row). In the left column, the attack
time of the gain filter is varied while the release time is held constant. The right column shows the reverse case. The time constants of the envelope filter are fixed
at zero. In all four cases, threshold and ratio are fixed at 32 dBFS and 4:1, respectively.

tent with “ancillary” data. With the help of the metadata, one
can then reverse the compression applied after mixing or be-
fore broadcast. This allows the end user to have control over
the amount of compression, which may be preferred because

the sound engineer has no control over the playback environ-
ment or the listener’s individual taste.
When the compressor parameters are unavailable, they can

possibly be estimated from the compressed signal. This may
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Fig. 6. RMSE as a function of threshold relative to the signal’s average loudness level (left column) and compression ratio (right column) using a peak (upper
row) or an RMS amplitude detector (lower row). The time constants are: ms, ms, and s.

thus be a direction for future work. Another direction would be
to apply the approach to more sophisticated models that include
a “soft” knee, parallel and multiband compression, or perform
gain smoothing in the logarithmic domain, see [11], [12], [17],
[18] and references therein.
In conclusion, we want to draw the reader’s attention to the

fact that the presented figures suggest that the decompressor
is realtime capable which can pave the way for exciting new
applications. One such application could be the restoration of
dynamics in over-compressed audio or else the accentuation
of transient components, see [19]–[21], by an adaptively tuned
decompressor that has no prior knowledge of the compressor
parameters.
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